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ABSTRACT
Electric vehicles (EVs) have been identified as one of the necessary
solutions to reduce the carbon footprint of transportation, a large
source of greenhouse gas (GHG). As adoption of EVs and infras-
tructures to support them grow, formidable hurdles to achieving
equitable economic growth and reliable transportation and energy
system via effective management of EVs have been discovered. This
opens major opportunities and challenges for spatial computing
research. Equitable distribution of EV infrastructure in a broad
region presents complicated spatial computing challenges with
a great social impact. Spatial computing informed adoption and
management of EVs will be essential to achieving the maximum
carbon reduction through EVs along with a reliable transition to
a renewable energy future. On the road, EV drivers may benefit
from spatial computing to choose routes that take into account
public fast-charging stations as well as energy needs of the route,
such as speed, weather (e.g. air-conditioning, heating, and elevation
changes). This paper presents open research questions of spatial
computing related to EV management.
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1 INTRODUCTION
The Electric Vehicle (EV) revolution is ready for its next phase:
building a deep infrastructure of public charging stations and assur-
ing the reliability of the nation’s electric grid. Along with leading
global initiatives, as seen in Figure 1, the US has adopted the im-
portant objectives to combat climate change and promote equity in
the positive impacts of its transition. We believe spatial computing
has a vital role to play in these endeavors. Our field is uniquely
positioned to manage the future of EV technology and help ensure
these larger goals are met.

Figure 1: Countries with Fiscal Policies Encouraging EV Uptake[15]

1.1 Societal Significance and Urgency
Combating Climate Change. Climate change has become the fore-
most issue for the global community and transformational solutions
are being considered to drastically reduce greenhouse gas (GHG)
emission, a major cause of climate change. In its recent report on
the longer-term strategy of the United States, the Biden administra-
tion is targeting net-zero carbon emission by 2050 ([25]). Compared
to the historical trajectory of U.S. net GHG emissions from 1990 to
2019, the emission targets indicated in Figure 2 are ambitious and
urgent.

Decarbonization is closely linked to electrification. Eliminating
liquid or gaseous fuels, which are generally more difficult and costly
to decarbonize than electricity, is a crucial step towards reducing
the carbon footprint ([17]). A third of the GHG emission currently
comes from transportation ([1]), making EV one of the key solutions
combating climate change. U.S. Department of Transportation has
made a commitment to build public network of EV charging stations
(EVCS), installing 500,000 public EVCSs by 2030, to support the
transition to net-zero emissions ([23]). EVs are uniquely posed to
serve both as consumption and battery storage for the electric grid,
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Figure 2: Biden administration’s decarbonization goals, highlighting Net-
Zero emission by 2050[25]
making the charge and discharge strategy of EV fleets vital to the
renewable energy transition ([21]).

Reliable and Equitable Transportation Infrastructure. The drastic
growth of EVs necessitates widely deployed and publicly accessible
EVCSs. For example, residential charger access may not be available
in multi-unit houses, and routes for heavy-duty EV trucks should
be supported by public EVCSs. Studies have indicated that charging
infrastructure costs represents a significant increase in the total
cost of ownership (TCO) for zero-emission tractor-trailer trucks,
some studies showing a increase over $110,000 per tractor-trailer
by 2025 ([14]). Society’s dependency on reliable transportation has
only increased in the recent times, evident in the consequences of
the disruption of supply chains witnessed during Covid-19 pan-
demics as an example. Building and managing the EV charging
infrastructure to ensure the reliability and equity across all com-
munities would be an essential requirement towards a net-zero
emission future.

1.2 Position
To accomplish net-zero carbon emission as well as maintain in-
frastructural security, we envision the use of innovative spatial
techniques that integrate the physics model of individual EVs with
the locations and availability of EVCSs, road network conditions,
and energy infrastructure data.

To realize the full potential of EVs, significant spatial computing
challenges need to be met. Modeling charge status and optimizing
EV operation would require capturing stochastic input variables in
real-time, such as demand and generation status of the local electric
grid, electro-thermal characteristics of each EV, and availability of
EVCSs. Realizing this vision in the real-world requires processing
EV measurement data on a large geographic scale at a close to
real-time basis, a colossal challenge of spatial big data science and
engineering.

As EV fleets and their infrastructure rapidly evolve across re-
gions, setting up a closed-loop process to monitor the regional state
of EV ecology and forecast the impacts of different development
scenarios in a timely manner is a vital task. Prognostics of the evo-
lution of EVs from statistical patterns in different regions will be a
rich spatial computing challenge.

2 OBJECTIVES AND OPEN QUESTIONS
We identified four research objectives with outstanding spatial com-
puting tasks. For each research area, we discuss existing techniques,

identify research gaps and envision new opportunities. Table 1
presents some example open questions per each objective discussed
in the following section.

Table 1: Open questions to prepare for the revolution of EVs

Objective Open Questions
Equitable Access to
EV Resources

• How do we measure spatial equality of
EV adoption (e.g. accessibility to EVCS,
environmental benefits, cost of driving)?

• How do we encourage equitable distribu-
tion of EV infrastructures?

Realistic Routing Ser-
vices for EVs and Opti-
mal Site Selection for
EVCSs

• What unique features of EVs does the rout-
ing service need to consider for reliable
operation of EVs (e.g. weather, elevation
of roads)?

• How do we place EVCSs for optimal re-
duction of emission and reliability of in-
frastructure?

Network-aware
Charge/Discharge
Scheduling for EVs

• How do we integrate currently disjoint
energy and transportation networks?

• How do we model and operate EVs as dis-
patchable energy storage?

EV Spatio-temporal
Big Data Engineering
for Prognostics and
Reliability

• What statistical features of EV driving big
data provide most significant prognostics
for large-scale EV management?

• Where and which kind of renewable en-
ergy should administrative or industry
plan to invest in to minimize the carbon
footprint of EVs with the least disruption
to the existing infrastructure?

2.1 Equitable Access to EV Resources
Figure 3 shows the distribution of public EVCSs in the U.S., as of
2021, on top of interstate highways. At a glance, wide distribution
of EVCSs can be observed in the east and west coast, while a size-
able gap appears towards the middle of the country. The uneven
accessibility to EV infrastructures is a trend that holds true not only
on a national level but also on a state level ([14], [12]). The U.S. gov-
ernment has already taken some early steps towards addressing this
issue, such as proposing a federal regulation to limit the distance
between EVCSs to be no more than 50 miles apart ([9]), although
the interpretation and implementation of such regulation is largely
undetermined. Current literature related to optimal distribution of
EVCSs rarely, if ever, includes equal access as part of its objectives
while highly emphasizing meeting the existing demand ([27],[10]).
This can aggravate the inequality of EV resource distribution by
favoring locations that can afford a large fleet of EVs, if equal access
to EV resources is not proactively pursued. The spatial computing
community may play a key role in defining the spatial equity of EV
accessibility as well as deriving an effective method to distribute
EV resources.

2.2 Routing Services for EVs and Optimal Site
Selection for EVCSs

Spatial Modeling of EV Rides. Modeling physical behaviors of an
EV on the road relative to the location and road conditions of its
potential routes is necessary for reliable routing service for EVs.
Many studies have identified the unique constraints of the EVs
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Figure 3: Public EVCSs nationwide, as of February 2022, identified by ESRI
[5]. Yellow dots show locations of EVCS and fuchsia lines indicate major
highways. Region with prominent gaps between EVCSs is circled in blue.

related to their energy consumption and battery lifetime in relation
to driving conditions ([6],[13]). For instance, in hotter days, due
to battery overheating, the driving range of EVs will decrease as
much as half during a normal driving condition. Vehicles relying
solely on electric power also pose other weather related dangers to
the drivers, such as losing heat during an extremely cold condition
([16]). Discovering spatio-temporal patterns of the behavior of EVs
under various environmental factors is a critical juncture to ensure
a sense of reliability for the EV drivers.

Route selection platforms, such as Uber or Google Map, have
started to adopt some of the constraints unique to EVs, such as
available EVCSs within the chosen route. However, more sophisti-
cated representation of EVs’ characteristics need to be captured in
this algorithm in order to make the selected route feasible. Weather
conditions ([2]) or light vs heavy duty vehicle model ([7], [8]) are ex-
amples of factors that have high correlation with EV’s trip range but
are currently being omitted in the major route selection platforms.

One-size-fit-all approach in modeling EV also results in an inac-
curate spatial characterization of EV’s GHG emission. For example,
in Figure 4, shows GHG emissions (life cycle g𝐶𝑂2 eq/mile) (Y-axis)
and total monthly cost (vehicle, fuel, maintenance) (X-axis) for
many electric (yellow dots), hybrid (light and dark pink dots), diesel
(gray dots) and gasoline (black dots) vehicles for the US states of
California (left half) and Minnesota (right half). The thicker spread
of yellow box on the right, corresponding to the range of carbon
intensity of EV models in Minnesota, is prominent and caused by
spatial variability between the two regions, such as fuel mix of
electric generation and gasoline price.

This is a major opportunity for the spatial computing commu-
nity to enhance navigation apps for recommending routes that
lower emissions rather than travel distance or travel time. In gen-
eral Physics models and vehicle big data may help compare the
expected greenhouse gas emissions of alternative routes and share
that with the audience. Recently, in October 2021, Google Maps
started putting a leaf symbol next to routes which are likely to have
lower emissions. However, they use a generic vehicle to compare
route choices and future research can improve the emissions es-
timates by using more accurate vehicle parameters (e.g., weight,
shape, engine-type) and electricity generation sources, which can
impact the emissions of a particular EV model across locations as
illustrated in Figure 4.

Site Selection of EVCSs. The availability of ride condition data and
road network data will significantly alter site selection of EVCS
network ([28], [24]). Current studies related to the subject tend

Figure 4: Carbon intensity vs lifetime cost of personal EVs by vehicle model.
Left graph shows the carbon intensity and cost of EVs in California while
the right side shows that of Minnesota. Yellow dots indicate EV models
while black and gray dots indicate combustion engines. Same 125 models
are represented on both graphs. A smaller gap between the gray shade and
yellow shade indicate EV models operating in the state are emitting GHG
almost as much as combustion engine models. Dotted lines, from top to
bottom, indicate emission goals of 2030 and 2040. [20]
to lack a holistic representation of EV fleets. Studies often focus
on optimizing the problem based on a small subset of spatial vari-
ability, such as some hypothetical characteristics of a vehicle (e.g.
battery lifetime, traveled distance) or historical cost and congestion
information of the electric grid ([22], [11]). As some real-world data
for the existing EV models became available, spatial computing
research has already begun to incorporate their operating data in
site selection algorithms and test feasibility of optimal scenarios
([8], [24]). However, vehicle and energy data to capture the spatial
and physics-related variability of EVs are constantly growing. The
continuing and rapid growth of EV fleets presents a rich area of
research for the SigSpatial community to discover the dynamics
between spatial variability of EVs and EVCS development and en-
hance the driving experience of the EV adopters while minimizing
the societal cost.
2.3 Network-aware Charge/Discharge

Scheduling for EVs
Scheduling charging and discharging states of a large-scale EV fleet
poses a formidable yet exciting challenges for the SigSpatial com-
munity. For the electric grid management, managing EV’s charging
hours to match hours and locations at which electricity demand is
low while securing idle EVs with residual charge as battery storage
during peak demands of electricity is a crucial objective([11], [19]).
Preliminary studies have already shown that integration of EVs
to the electric grid without consideration of the charging strategy
may reduce carbon emission minimally or even worsen the net
emission because of the investment cost of new technologies and
increased usage of electricity ([18], [4]). EVs’ participation in the
energy market will have a direct impact on overall electric system
and current research has cautioned that, without near-real-time
monitoring and meticulous planning, a large moving fleet of EVs
may lead to volatility and instability of the electric grid ([3], [28]).
Spatial computing techniques, such as spatial temporal graphs and
spatial big data querying, will make a significant impact on the
solution of this problem.
2.4 EV Spatio-temporal Big Data Engineering
Computationally, EV measurement data sets have spatio-temporal
graph semantics, where EVCSs can be modeled as vertices and
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electric connections between the stations are represented as edges
([26]). Because of the scale required to incorporate spatio-temporal
data of quasi-real-time granularity, cloud computing platforms will
play an essential role to scale up data analytics for handling the
huge volume of EV data. Although graph representation databases
are gaining popularity (e.g. Neo4j, Arangodb), their applications to
represent spatial computing environment have been limited and
the volume of temporal data generally remains as a challenge for
any graph structure. Hence, spatial temporal graph-aware com-
putational infrastructure is needed to improve the computational
solubility of EV data analytics, leveraging the graph-like nature of
its data. The ability to abstract graphs of different time slices to
properly represent system-level temporal patterns along side the
vehicle-level behaviors will be critical.

3 CONCLUSION
In this paper, we introduced a vision of managing EVs that takes
full advantage of the innovation of clean transportation and the
opportunity of EVs as a vital part of society’s transition to a re-
newable energy future. The goal of net-zero emissions, improved
public health, and reliable energy transition all rely on spatial com-
puting informed management of EV fleet and the infrastructures it
depends on. The SigSpatial community is poised to make a lasting
contribution to society by taking on these challenges and doing the
research that needs to bring forth the EV revolution.
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